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APPROACHES FOR EMPIRICAL BAYES CONFIDENCE INTERVALS

Bradley P. Carlin and Alan E. Gelfand

ABSTRACT

Parametric empirical Baycs methods of point estimation date to the landmark paper

of James and Stein (1961). Interval estimation through parametric empirical Bayes

techniques has a somewhat shorter history, which is summarized in the recent paper of

Laird and Louis (1987). In the exchangeable case, one obtains a 'naive" EB confidence

interval by simply taking appropriate percentiles of the estimated posterior distribution

of the parameter, where the estimation of the prior parameters ("hyperparameters") is

accomplished through the marginal distribution of the data. Unfortunately, these .na-

ive" intervals tend to be too short, since they fail to account for the variability in the

estimation of the hyperparameters. That is, they don't attain the desired coverage

probability in the "EB" sense defimed in Morris (1983a,b). They also provide no state-

ment of conditional calibration (Rubin, 1984).

---ht this paper we 15ropose a conditional bias correction method for developing EB in-

tervals which corrects these deficiencies in the naive intervals. As an alternative, several

authors have suggested use of the marginal posterior in this regard. We attempt to

clarify its role in achieving EB coverage. Results of extensive simulation of coverage

probability and interval length for these approaches are presented in the context of se-

veral illustrative examples.

KEY WORDS: Confidence interval; empirical Bayes; bias correction; parametric boot-

strap; conditional calibration.



1. INTRODUCTION

Consider the usual exchangeable Bayesian formulation, that is, given 0, the data

Y 1,j = 1, , n, are independent having probability density function f(y I ,), i = 1 ... I, P,

and the 0, 's are i.i.d. from some continuous prior distribution having density ir(O I q) over

0. Our ensuing development assumes 0, is a scalar; however, extension to 0, a vector is

illustrated in Example 2.4. We shall work in the parametric empirical Bayes (EB) setting

(Morris 1983a) and let 71 index the members of the family 7t, although I could be viewed

as indexing all distributions, producing the nonparametric empirical Bayes of Robbins

(1983). By construction, the Y, = (Yb, ... , Y,,) are marginally independent with distrib-

ution m G, yI), although within i, Y,, and Y,,. are not independent. The joint marginal
p

distribution of all the data, Y = (Y,.., Y) is thus m (YIui) = hm (Y, 11). Finally, let
'=1

f(0, ty,, nl) denote the posterior distribution of 6,.

In the fully Bayesian setting, one chooses a value for 7 (based on subjective infor-

mation or prior knowledge) and then bases all inference about 9, on f(0, Jy,, ii). Familiar

confidence intervals for 9, based upon this posterior distribution include

* equal tail, where we take the upper and lower a/2 points off(, ly,, ?1), respectively,

as our interval. If we let q.O,, i/) be the c", quantile off(0, Iy,, ?1), we may write this

interval as

(q,12 (yi, ?), ql-o(2 (Yi, '1)). (1.1)

" highest posterior density (see Berger, 1985), where we take all 6, C S such that

f(0, ly,, ,) > c(a) and P(9, e S) = I - a. If our posterior is unimodal we obtain an

interval

(q;.(y 1, ),q1 _ .. (y,, ' ) ), + a - . (1.2)

2



In the EB setting we view ?7 as unknown, and use m (Yb1/) to obtain an estimator

I(Y). EB point estimation based upon the resulting "estimated posterior," f(0, ly,, ?1), has

been well discussed (see Berger, 1985). Best choices of P1 (e.g. MLE, UMVUE, moments

estimator) in a decision theoretic sense usually require case by case investigation. This

same problem arises in developing EB confidence intervals. The "naive" EB confidence

intervals based upon f(0, ly,, ;) corresponding to (1.1) and (1.2) are, respectively,

(q.12 (yi, ?1), qI--/2 Oyi, r1)), and, (1.3)
A A

(q,, (yi, n), q -'" (yi, ni)). (1.4)

These intervals arc called "naive" because they ignore randomness in r. While relatively

easy to compute, they are often too short, inappropriately centered, or both. More

precisely, for 0, Morris (1983a,b) defines an EB confidence set of size I - a as a subset

t.(Y) of E such that P, (0, e t(Y)) > I - a , where the probability is calculated over the

joint distribution of 0, and Y. This definition becomes more appealing if the inequality

is replaced by approximate equality. Hence we shall say that t.(Y) is an unconditional

I - a EB confidence set for 0, if and only if for each q/,

P7 (0i 1(Y))I -a. (1.5)

Rubin (1984) has observed that (1.5) is "a fairly weak statement in the absence of

statements about calibration conditional on characteristics of the data." We concur and

hence modify (1.5) to an approximately conditional statement given a suitable summary

of the data, b(Y). That is, t,(Y) is a conditional I - a EB confidence set for 0, given

b(Y) if and only if for each ?7 and b(Y) = b ,

P,7 (", e t,(Y) I b(Y) = b):Z: I - a. (1.6)

The naive intervals (1.3) and (1.4) generally fail to satisfy both (1.5) and (1.6). In

Section 2, we introduce a method for correcting the naive interval (1.3) to meet (1.6)
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where correction is made conditionally on b(Y)= Y,, the sufficient statistic for the

posterior. Theoretical results and empirical work show, in response to Rubin, that

roughly nominal coverage conditionally on Y; ensues. This in turn insures that uncon-

ditional nominal coverage (1.5) will be roughly achieved. The method is applied to se-

veral examples, including simultaneous simple linear regression.

Several authors (Deely and Lindley 1981, Rubin 1982, Morris 1983a,b, 1987, Laird

and Louis 1987, and Pepple 1988) have employed a hyperprior on lIto adjust confidence

intervals based upon the estimated posterior to reflect the uncertainty in n/. The pro-

posal is to use corresponding quantiles of the resulting "marginal posterior" in place of

those of the estimated posterior. This additional integration (mixing) produces a dis-

tribution which has more spread than the estimated posterior, hence produces intervals

longer than the naive ones. In Section 3 we explore the link between using the marginal

posterior and satisfying (1.5). In Section 4, we present simula-aon results of coverage

probabilities and interval lengths for these approaches in the context of the aforemen-

tioned examples. We summarize our findings in Section 5.

2. THE BIAS CORRECTED NAIVE APPROACH

Efron (1987) proposed a general framework for correcting the bias in naive EB in-

tervals. In the exchangeable case, a direct conditional bias correction may be developed

as follows. We consider confidence sets for 0, given b(Y) = Y,. Taking i = I w.l.o.g.,

recall that q,(y,, ?1) is such that

P(01 q,(yl, ?) 101 -f(I y1 , ))= . (2.1)

Define

A Ar(t, ,7, Y1, 00 = P(O qy, i) 10f1 (0 1 lyl, n)) (2.2)

and finally
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A

R(l, yl, E;) Ely,. (r(n, nyl, )) (2.3)

where the expectation is taken over g(r ly,, n), a density with respect to Lebesgue meas-

ure. Note that R depends upon the dimensionality p of the problem as well, but this is

suppressed. Since (2.3) need not be close to a , we can see Ahy (1.3) and (1.4) usually

fail to meet (1.6) for b(Y) = Y,. Suppose we solve

R(,,, a) = (2.4)

for a'. This ca' would conditionally "correct the bias" in using '1 in our naive procedure.

Applying (2.4) to each tail would produce intervals which meet (1.6) exactly. But of

course we can't solve (2.4) since ?I is unknown. Instead, we propose to solve

A

R(n, y, x') = a (2.5)

to obtain a' = cx'(i,y,, a). Then we take as our bias corrected naive EB confidence inter-

val (1.3) (or (1.4)) with "a" replaced by " cz' ". In this paper we confine ourselves to the

case where the density g(i ly, q/) is available in closed form. Calculating the left hand

side of(2.5) in this case is called a conditional "parametric bootstrap" (Laird and Louis,

1987). When g(; ly,, ?1) is not tractable a conditional "Type III parametric bootstrap"

(terminology again due to Laird and Louis; see also Section 3 below) estimator of the

left hand side of (2.4) may be used in (2.5). We detail such estimation in a subsequent

paper. Note that to effect unconditional bias correction (1.5) we would replace (2.3) by

R(q, a ) = E;,,j,(r(n, 7,y,, c)) , and solve R(j1, ot') = o .

Under mild regularity conditions, our procedure gives a unique confidence interval.

Lemma 2.1. If ar/rac exists, then the bias corrected confidence interval is unique.



Proof. From (2.1) we see q.(,y,) T -a, hence r , ?7.y1, ) 00T Oc But ORln,=

(8/O )Jr( i, r,yi, a) dG( yIT, ,n) = f~r( i, ilY 1 , c )/8 dG( IT,, ) > 0. Thus R T o, and so

(2.5) has a unique solution.

Conditional coverage given Y, is consistent with the Bayesian view given in (1. 1) and

(1.2), since in the exchangeable case Y, is sufficient for 0, in the posterior family, i.e.,

f( 1 1 Y, 1) =f(8, 1 Y1, ?1). Typically when n, > 1 we condition on a minimal sufficient

function of Y, (see Examples 2.3, 2.4 below). Moreover, Theorem 2.1 below and our

empirical work show that our conditional bias correction approach for suitable ?I in fact

roughly achieves (1.6) with b(Y) = Y.

Implementation of (2.3) -- (2.5) may be easier if 'i is independent of Y1, e.g., if r is

based on Y2,..-, Y,. The integration in (2.3) is now over the usually more accessible

distribution of ?1 ?1, but correction is still conditional given Y, (see Case II of Section 4).

Again for 01 scalar, suppose there exists a function , of 8, and y, monotone in 0 for

fixed yi such that the conditional distribution of , given y, is the same as the uncondi-

tional distribution of ,. Then , may be called a pivotal (see Cox and Hinkley, 1974).

Bias correction of (1.3) or (1.4) is equivalent to bias correction of the corresponding

quantiles of ,'s distribution. Expressions (2.1) and (2.2) may now be replaced by cor-

responding ones with y, deleted.

If unconditional EB coverage is the objective, the pivotal is helpful. We may inte-

grate trivially over Y, I ;, 17 and then numerically over ;/ I . A corresponding version of

Lemma 2.1 holds and a corresponding version of Theorem 2.1 will go through if

1 I q and 11 7 are stochastically ordered in 1. Bounds on the unconditional expected tail

probability result. To illustrate, we turn to Examples 2.1 and 2.2 where a pivotal is

available enabling simple bias correction to satisfy (1.5).

Example 2.1. Exponential/Inverse Gamma (IG). First suppose n, = I for all i. Let
I'd

Y1, , ,- Exponential(8,), i = 1, ... ,p independent, and let n,... , , b),
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, b > 0. Thus f y, 10,) =01- exp(-y,10), y,>O, O, > 0, i= ,..., p. and it(0,In1, b) =

exp( -l/Ob)/(F,)bO? ) , , b > 0, i = I, ... , p. Hence the marginal distribution of Y, is

m (yj 11, b) = nb/(byj + 1)'T' 1, y, > 0 (2.6)

and the posterior distribution of 0, is

f (0ly1, n, b) = exp( - (y + Ilb)101) (y + I1b)'.f(Oi y 1) 6, b) =(2.7) rj+ I) I,

that is, (2.7) is Inverse Gamma(?l + 1, (y, + l/b)-'). Taking b = 1, from (2.7) we have the

pivotal 0, = 1,(y, + I)- IG(?7 + 1, 1) . From (2.6) the MLE oft is i / =p/Zlog(y, + 1) and

(2.2) becomes r(?i, n, a)= 1 - D4,,(D 2(^(I - at)) where Dk is the X2 c.d.f with k de-

grees of freedom. k not necessarily an integer. For unconditional coverage we need the

distribution of ?11?1, which is IG(p, l/(?Ip)) • We solve R(7i, a')= a using a one-

dimensional numerical integration (transforming the IG to the interval (0,1) and using

16-point Gaussian integration -- see Abramowitz and Stegun 1967) with one rootfinder

(using false position). As an illustration, Figure 1 plots c,'(rI, a) versus r, for nominal

upper and lower tail areas a = .01, .025, .05, .1, with p = 10.

(Note: Insert Figure 1 about here)

For conditional coverage we need the conditional distribution of ?I, . This may be

obtained by routine transformation after noting that, given ni, I and a = I log(Y, + l)Ip

are independent, the latter having a Beta(l, p-I) distribution. We omit the details.

Example 2.2. We can extend Example 2.1 to the Gamma/IG problem, i.e.,
,nd

Y,~ Gamma(v,, 0,) where v, known and not necessarily all equal (for example, v, might

be n,) and 0,- IG(i7, b), i= 1, ... ,p. Again we take b= 1. (Note that this case includes

the X1 scale problem.) One can show that Y, In~ F(v, + y,)/(I-(v,)F ))).y- /(y, + 1)., ', a

Pearson Type VI distribution (Johnson and Kotz, 1970). Again , = O /(y, + 1) is a piv-

otal, which is now distributed as IG(v, + nt, 1). While the MLE il is no longer available
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in closed form, we can show that T(?I) = Zlog(y, + 1) is decreasing in ?1, and thus we can

use T(n) to implement bias correction.

Remark /. With a pivotal, unconditional correction will automatically conditionally

bias correct given any T(Y) independent of ?1, since integration over ) I T, ?I is the same

as over '1*k. This means that if ?I is chosen independent of Y1, unconditional bias cor-

rection will achieve conditional bias correction given Y, (see Example 2.4). If ij and Y,

are not independent, the pivotal is not helpful since the integration in (2.3) is still with

respect to g(q ly,, 'i) even if r is free ofy,

Examples 2.3 and 2.4 offer a class of problems where (2.4) is free of n, as well as y,.

This means a' can be obtained from ax without having to estimate ?J, and nominal un-

conditional coverage is exactly achieved. Empirical work in Section 4 shows that such

unconditional intervals demonstrate good conditional behavior given Y, as well.

Example 2.3. The normal,;normal problem where we assume n, = I for all i . Thus
n d d

we have Y, - N(0,, a2), 0, .V(,U, 72), i 1, ... , p. Let 02 be known and = I w.l.o.g. Then

f(61 1y , a) = N(Bp + (1 - B)y , 1 - B) (2.8)

where B= I/(I + r) . Ifwe assume r 2 known , = 0,- (I - B)Y is a pivotal distributed

as N(Bu, I - B). If q.(p) denotes the O,,h quantile of this distribution,

q(g) = BA + T(I - B) 0-'(a) and (2.2) becomes

,- B) += (-(B)} (2.9)

where ! = Y. For EB coverage we integrate (2.9) with respect to the distribution of

u which is N(1i, I/ Bp). Cleai ly *he resulting R is free of u; ' depends only on a

Hence exact unconditional bias correction can be achieved and exact EB coverage at-

tained (see Cox, 1975, Section 6). Conditional bias correction requires integration with

respect to the distribution ofry,, yu which is N((u(p - I) + Y,)Ip,(p - 1)/lp2 ).
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Alternatively, if we assume u known but T
2 (hence B) unknown, then no pivotal from

(2.8) is possible. For conditional bias correction, assuming B is a function of

T= Y(Y, - ,) 2 we need the distribution of TI Y,, B, which is immediate from the fact that

Y (, - g)2 I)', B -B I xE (see Case I of Section 4 below).

If both A and r2 are assumed unknown, conditional bias correction requires the joint

distribution of Y. E(Y, - y)2I Y,,p&, B, which can be attacked through a Helmert trans-

formation on Y. If Y and Z(Y, - y)1 are based only on Y2, .. , Yp, matters are simpler.

Example 2.4. The previous example can be extended to the case of p simultaneous

regressions. Let Y 10,-.V(XO,f),i= 1, .. ,p where Y, is n, x I , Xis n, x k full rank,

and 7& is assumed known. In practice we would use an independent estimator of a,

based upon Y, in what follows. When n, is at least moderate there is evidence (Lawless,

1981 pp 463-4) that the resulting coverage will differ little from that with a, known.

Suppose 0 - N(u, r2/) . This prior is perhaps most reasonable if the columns of the X,

are centered and scaled. For convenience we in fact assume that VX, = I,,. Routine

calculation shows that 6. 1 Y., p, r2 ~  N(B,,u, + (1 - B,),A'Y,, a,(1 - BJI) where

B, = af(r, + r2), while Y I g, -r .V(X, Y) where XT = (X'T ... , ;) and Z, is block diag-

onal with ?"1 block being B,/a I, _. Ifr 2 is assumed known then , = 6- (I - B,)XYI

is a pivotal having distribution N(Bg6 , al(l - B3)!) while =(,t'A.X)-A'XT14' Y

- .V(p, p [). The independience of the coordinates of , combined with the argument

at the beginning of Example 2.3 enables construction of a simultaneous k-dimensional

confidence rectangle attaining exactly nominal EB coverage. A simultaneous EB confi-

dence ellipsoid can be developed by noting that 1r - a(l - B)x1.A , where

,., = (B 4 0)/(2r ( I - B,)), and then bias correcting r(.,, A1, a) =

p , _q,(A) ,, ~-,()- . Conditional EB coverage could be attempted

through the distribution of/,I Y, . However, if a is calculated deleting Y,, then by Re-

mark I above, exact conditional EB coverage given , can be achieved. If 72 is assumed

unknown matters become much more complicated. No pivotal exists, /, and ;2 will be
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unavailable in closed form unless all a, are equal, and the conditional distribution of

I Y is intractable. A bootstrapping method will be the only feasible approach.

Does the conditional bias correction method actually produce approximate condi-

tional coverage given Y,? Again taking i= I to answer the question, we need to see how

close the expectation

E . P(O 1 <q (Y-, , ?I) 1 Of (1, 1Y1 ,))
A A(2.10)

E;, Yi r(7/, ,YI, C'()7,Yi, a))

is to a L nder usual zonditions, since 0, is continuous, if n is a consistent estimator of

I (as p tends to infinity) then (2.10) will converge to a. For fixed p, while exact evalu-

ation of (2.10) is not possible, Theorem 2.1 is encouraging since it shows that in many

cases (2.10) falls in an interval containing a.

THEOREM 2.1. Suppose both f(0, Iy,, ,1) and g (; ly, '/) are stochastically ordered

families in q for fixed yl. Then the conditional expected "tail probability," (2.10) is

bounded above by a + max(l, I2) and below by a + min(l,, 12) where

A A A A

[7'(r,y1 , a) - 4(i, '1,y, a'(7,yl, a))] g (nllYl, r)d7 , and
A A A A

.= ."<n [a'(,,y, ) - r( , YI , a'(n,y,, a))] g (I jYj l , )d,1

Proof. We prove the case where both f(0, iy, ij) and g (; ly, ?1) arc stochastically in-

creasing in ?7, with the proof for the other cases following similarly. Thus q.(y,, 17) T n/ for

fixed y, and in fact from (2.2), r(n, ?7,y, a) 1 '/while r(77, ?7,y,, a) I ?I . Since g (?I y,, '/) is

stochastically increasing in 1,

A

R(7,yi, ac) = E-ly, r(i , n,y 1 , ) 1 n (2.11)

(see e.g. Lemma 2, Chapter 3, Lehmann 1986). Also, the mild regularity condition of

Lemma 2.1 insures that R(?,y,, a) T a.
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Ne\t, let , < I, and consider for a specified cc0, oc'(j,,y, ) and a&(n,y), OI) arising

from R(7,y,, x') = 7, and R(?I2,y,, c') = ac , respectively. By (2.11), R(n,y, a) lies below

R(7,j,, xc) whence y'(,, ) > c'(j,yj, a), that is, oc'(j,y,, ) 4, n . Thus if77 < 7,

^ &A A Ar 7, , . '(7,y), cc)) _ r( , ,y,, c'(7i,y,, a)) _r(ij, j,y,. '(T,y, )) 12.12)

In addition, the inequalities in (2.12) are reversed if <ii. The left hand side of (2.12)

equals )c'(j,y,, 3t) and thus is decreasing in q; the right hand side of (2.12) is increasing

n . However, we cannot conclude monotonicity for r(n, ?I,yl, ct'(n,y,, c)). Figure 2 of-

fers a generic view of the situation.

(Note: Insert Figure 2 about here)

Finally since EA r(, gy,, o'(7,y1, cx)) = R(n, y,, c'(?I,y, cc)) = a by definition, the

bounds in the theorem follow.

Remark 2. From Figure 2 we see that 1,./ < 0, whence (2.10) falls in an interval

containing a

Remark 3 The fact that Y, (or a function of 1') enters directly into the posterior

(hence into all of our subsequent expressions) makes qualitative examination of condi-

tional coverage of our bias correction method given Y, straightforward. Analytic ex-

amination of conditional coverage given other characteristics of the data does not seem

promising, except in cases where a pivotal exists, as in Remark 1.

If n is of dimension k then calculation of R requires a k-dimensional numerical inte-

gration and the solution of(2.5) requires a rootfinding algorithm. A possible alternative

to the numericai integiation is to utilize the approach of Cox (1975) who suggests ex-

pansion of r(j,7,y,,c) in n about ?1, i.x., r( , ,y,,c) r(,,,y,,cc)+(; -

+ 1/2(n - 17 )T/l(7 - ,1) where (Vr(,)), = (ar/aj,) [ and (Hj)), = ( 2r/aij, an,) 1, whence

A A A

R(n.yl, c)c- + E - (7- n)TV,(n) + 1/2 tr[I1r(7) ,E. ( - n)(I - ) ] (2.13)

n .



Denoting the right hand side of (2.13) by R'(r/,ya), analogous to (2.5) we may solve

R'(n, v,, a')-a for a'. Note that even if g(ql y, ) is a standard distribution so that

E , (ii) and E' are readily available, (2.13) still requires the evaluation of 2k + (')

numerical deri atives.

3. THE MARGINAL POSTERIOR APPROACH

In the PEB setting several authors have attempted to account for the variation in

estimating the hyperparameter I by introducing a hyperprior distribution on ?7. Corre-

sponding quantiles of the resulting "marginal posterior" are used in place of those of the

estimated posterior. As a mixture of posteriors, this marginal posterior typically has

more spread than the estimated posterior, so that intervals longer than the naive ones

result. This section is intended to illuminate this marginal posterior approach.

To formalize the setup we again confine ourselves to the exchangeable case using the

notation of Section 1. Suppose I(Y) is an estimator of ? which is sufficient for the

marginal family m(Y 1 ?7) and has density p(l 1 ?) with respect to Lebesgue measure. Let

T(q) be a continuous hyperprior on q/, which induces the conditional distribution

h( If) oc p(;] (77) . z( ), which in turn induces the "marginal posterior" for 0,,

A A

1(0 ly,, 7) = f (O01 y, q)h(q 1 t)dii (3.1)

We subscript I to indicate which mixing distribution was used with the posterior. The

naive intervals (1.3) and (1.4) would be replaced with corresponding lower and upper

points of . Hence coverage in the sense of(l.5) or (l.6) will vary with the specification

of r , or equivalently, h. This pure Bayesian approach is less targeted at achieving

specified EB coverage than that of Section 2. For example, there is no obvious re-

lationship between using a vague hyperprior and achieving nominal EB coverage

through the resulting (3.1). In fact Laird and Louis (1987) were empirically successful

in the normal normal problem (Example 2.3) with known prior mean and unknown prior

12



variance using 1, (i.e., mixing with respect to o(n 1 ?1), the sampling density with ? and n

exchanged). The key issue (a non-Bayesian one) concerns the existence and nature of

an h which will be successful in achieving nominal EB coverage. (We defer a rough

discussion of this issue until the end of the section.) For instance, if the naive EB con-

fidence interval is too long (as in Case I nf Section 4) this approach seems doomed to

failure; we need to correct, not lengthen.

When p is available in closed form the numerical integration in (3.1) can be carried

out directly (Deely and Lindley 1981, Rubin 1982). Morris (1987) suggests approxi-

mating , using the member of the posterior familyf whose first two moments agree with

those of 4. Laird and Louis (1987) suggest approximating (3.1) by the use of a Type III

parametric bootstrap. That is, given r , draw 8 from i(O). Then draw

r fromf (y O), and finally calculate n' ?(Y) . Repeating this process N times, we

obtain i', 1 1, , N distributed as p( I[) . The discrete mixture distribution

Nf y1 , )/ 'V. (3.2)

is taken as the estimator of (3.1) and quantiles of (3.2), obtained by a rootfinder, are

used instead of those of (3.1).

Note that (3.2) is an unbiased estimator of 4, and converges almost surely to , as

N - oo, leading to criticism of its use in the comments following the Laird and Louis

paper. But if the objective is EB coverage, 1, (or an estimate of it, like (3.3)) may be as

good as 4. An important point is that since p (hence ,) changes as ; changes, the per-

formance of the Laird and Louis approach can be quite sensitive to the choice of ,7 (see

Example 3.2 and Table I below). The empirical success of (3.2) suggests that for the

examples to which it has been applied, with a good choice of ?1, p( • I ) is a good choice

of h. For any I-i onto transformation of ;I given n , s (I), having density i , the Type

II1 parametric bootstrap enables estimation of l, by Zf(, ly,, s 7,(I:)) / N analogous to

13



(3.2). There may exist a choice of s ( such that 0 "matches" h , i.e. 1, = , This ex-

tension is attractive in thaL, like (3.2), it does not require that p be given in closed form.

If p is available in closed form then for any T the Type Ill parametric bootstrap

provides an importance sampling Monte Carlo integration (Hammersley and

Handscomb 1964, Geweke 1988) of(3.1) of the form

f-(Oj. lyj, ?lj ) k;(Plj*

/V (3.3)

j=I n7

where k,(.)= p(j I.)r(.)/p(. 17). Note that the standardizing constant for h is not

required. Implementation of the marginal posterior approach for a specified T in the

absence of a closed form for p is unclear. We consider eariler examples in this context.

Example 3.1. Consider the normal/normal example 2.3. Assume g unknown but B

known. The sampling distribution p( I gi) is N(A, I /(Bp)). For a flat hyperprior

-, h(#I/c) is N( , l/(Bp)). Hence 0 = h for s.(,u) = u (Laird and Louis, Theorem i). If

we assume B unknown as well, Theorem 2 of Laird and Louis shows that no choice of

s will produce ' = h.

Example 3.2. Consider again the exponential/inverse gamma example 2.1. Recall

that the sampling distribution p(; I i) is IG(p, l/(np)). Then the hyperprior associated

with 1, is neither simple nor natural. Under the flat hyperprior -r,(71) - 1, il > 0, h1(i1 1 17)

is Gamma(p + 1, ,tip), and there is no obvious choice of s having distribution h, but

we can use (3.3) to "match" (3.1). Under the hyperprior T.,(?) = ?I-, I > 0, h2(n I i') is

Gamma(p, j/p), ind s ;(r) = j/?? does have density exactly h2. Pepple (1988) places a flat

hyperprior on l/r/ but then approximates the resulting marginal posterior by a gamma

distribution whose first two moments agree with those of the exact 1, .

We return to the question of when 1, may be expected to give approximate nominal

EB coverage. For any marginal posterior (such as those in (3. I)-(3.3)), let Q (1,, ,t) be

14



a- a posterior (Bayes) credible set for 0,, i.e. P,( eI (Y,,- ))=l-a Let

1(0,, Y,, I) = 1 if(0,, Y,, ;) are such that 0, e C2'( Y, ?^), and 0 otherwise Then provided the

distribution of il ly, is proper, E,,,[P,(O, e C.( (Y,, n) ly,)] = E. Al(0,, y, 7)

=E, P, (0, eC )( Y,, I)) E (-a)=1-a.

Thus for any l, such that the distribution of j7 ly, is proper, on average (over ?I Iy,)

C.,(Y,, 1) meets (1.6); it provides conditional EB coverage given Y, A good , however

requires that P,(O, e CQ(Y,, ;) Iy,) - 1 - a for each ?1. To address this more demanding is-

sue, consider the following rough argument (motivated by Laird, 1988), which provides

insight in the case where a pivotal exists. Dropping Y, in (3.1) and replacing 0, by e, let

qO.I)(r) denote the a"' quantile of l(, Inr), and let q.(r7) denote the aCh quantile of the true

distribution of , 7 (obtained from f(8i ly, 1)). Defining e )(;j, a) = P4,1,(k, - q0)(.1)),

we show when the expectation of r(h) over ?i I will fall in an interval containing a. Since

mixing by h will typically "spread out- the posterior (hence the distribution of ? J r), we

assume that for a small (near 0), q<.")(?7) < q.(7) while for a large (near 1), q<j)(j) > qjrj)

Suppose additionally that h is such that for a small r' ) is approximately convex in ; while

for a large r ) is approximately concave in ?1. (We argue when this might be the case

below.) Finally let ; be unbiased for q. Then for a small,

(A A

a)) <- )(3.5)

where r and R are as in (2.2) and (2.3) with Yt deleted because of the pivotal. But also

r h)(, , a) <_ r(, ?, oa) = a < R(?7, a) (3.6)

where the last inequality in (3.6) usually holds because, when a is small, a' such that

a = R( 7, a') is usually less than a and R( 7 , a)Ta by Lemma 2.1. Together, (3.5) and (3.6)

suggest that for a small E;1 rl will be close to a. For a large our assumptions reverse

the inequalities in (3.5) and 3.6) and thus a similar conclusion holds.
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To return to the question of the convexity or concavity of YO), suppose the distrib-

ution of , 1 ;, is unimodal. Then the c.d.f of , 7 will be an increasing convex (concave)

function below (above) the mode. Hence if h is such that q(")(?) is approximately convex

(concave) in 17 for x small (large) then r(', will be approximately convex (concave) in '1

for a small (large). We recall that under families stochastically ordered in 71, q 10(1) will

be monotone in n. Using the definition of q ,)(?j), implicit differentiation enables an ex-

pression for its second derivative. We omit details.

4. SIMULATED COVERAGE PROBABILITIES AND INTERVAL LENGTHS

In this section we present the results of simulation studies comparing the methods

discussed in the previous two sections. We first offer results for the bias corrected naive

(BCN) method, then some limited results for the marginal posterior method. Finally

we give the unconditional EB coverages for both methods in a unifying example.

I. First, we illustrate the bias corrected naive method's ability to achieve conditional

EB coverage regardless of the length of the naive intervals using the normal/normal

problem of Example 2.3. We assume (as do Laird and Louis in their numerical work)

that the prior mean /i is known and equal to 0 w.l.o.g., but that the prior variance r2 is
p

unknown. To implement bias correction given Y, we use B pl(p + z _)

(Raghunathan, 1987). This estimator of B is smooth with distribution having support

(0,1), unlike the MLE, MVUE, or truncated versions of them proposed by Morris

(1983b) and Laird and Louis (1987). We then obtain a'(B,y,, ot), and compare intervals

based on this bias correction with the naive EB interval (1.3) and the classical frequentist

interval (simply Y, ± 0-'() in this case). We took B = .5, p = 10, the nominal y = .90,

and used 5000 replications.

(Note: Insert Figure 3 about here)
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Figure 3 shows the resulting simulated coverage probability of these three intervals

for 0, conditional on y,. The points plotted range from the .025 to the .975 percentile

points of Y,'s unconditional distribution, which in this case is N(O, 2) . Note that the

classical method's conditional behavior is conservative for central Y, 's but very poor in

the tails. The unusual aspect of this example is the pattern of lengths and conditional

coverage of the naive EB intervals -- too short and below the nominal level in the tails

of Y,'s distribution, too long and well above the nominal level in the middle. This is a

result of the bias in our estimator B. The conditional BCN (CBCN) method gives in-

tervals that flatten out this pattern over Y, 's distribution. In addition, the simulated

CBCN intervals were uniformly shorter than the inappropriately centered naive ones.

They also had nearly constant average lengths, ranging from about 82'0 as long as

classical in the tails of Y,'s distribution to about 75'o as long as classical in the middle

of the distribution. Of course, the fact that the CBCN method achieves conditional EB

coverage over Y,'s distribution implies unconditional EB coverage overall.

11. As a second example of the BCN method, consider the regression problem in-

troduced in Example 2.4. For illustrative purposes we consider simple linear regression

with 0, = (a, , #,)" assuming p = 5 simultaneous regressions, each having only n, = 5 ob-

servations. For convenience we take the X,, equally spaced, centered and scaled for each

i . Let both the model variance a' and the prior variance T
2 be known and equal to I

w.l.o.g. Since in this case a pivotal exists and ct' is a function only of a, unconditional

bias correction (UBCN) produces exactly unconditional EB coverage, (1.5). An exact

conditional bias correction (CBCN) given Y, may also be implemented, since by Remark

I and Example 2.4, if we choose an independent, unbiased estimate of u0 , we can again

find o' as a function only of a.

(Note: Insert Figure 4 about here)

Since our design makes the slope f3, and the intercept a, independent in the posterior

family, we may obtain bias corrected intervals for them separately. Taking the true
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values of the hyperparameters to be A. = 0 and A = 1, and again using 5000 replications,

Figure 4 shows simulated coverage probabilities conditional on ZXJYJ for the

classical, naive EB, UBCN, and CBCN intervals for /31 The points plotted cover + 3

standard deviations of the unconditional distribution off, which is N(I, 2). Again note

the very poor conditional behavior of the classical method, and the poor conditional and

unconditional behavior of the naive method. Of course the UBCN method guarantees

nominal unconditional behavior, but also exhibits good conditional behavior in this case.

The CBCN method's behavior is perfect as advertised, its curve being completely flat at

y = .90 to the accuracy of the simulation (standard error z .004). The fact that we as-

sumed all variances known means that all the methods have a constant interval length.

In this example the lengths are: classical, 3.29, naive EB, 2.33, UBCN, 2.55, and CBCN,

2.60. We can similarly exactly bias correct a simultaneous EB confidence rectangle for

(a,/,1) , conditional on both & j Z Y-15 and fl, and thus unconditionally.

ii. To shed light on the question raised in Section 3 of a good choice of marginal

posterior, we return to the exponential/inverse gamma case of Example 3.2. We com-

pare the sensitivity of the achieved EB coverage probabilities to the choice of I using the

Laird and Louis bootstrap, the r, (flat hyperprior) matching bootstrap, and the r

matching bootstrap methods. From the discussion in Example 2.1 if
I p

il, = c/Zlog(Y, +1), appropriate choices for c include p (MLE), p-I (UMVUE); and p+ i

(best invariant under suitable squared error loss). Choice of ;, affects the scale param-

eter of the sampling density for drawing the bootstrap ;" °s. We ran a simulation of 3000

replications, N = 400 bootstrap observations per replication, with I = 2, p = 5, and

nominal y = .95 to compare these three methods over the three choices of ;. The results

are summarized in Table 1, which shows achieved EB coverage probability, with interval

length in parentheses.

(Note: Insert Table I about here)
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The Laird and Louis bootstrap is extremely sensitive to choice of ?1, while the r, match-

ing bootstrap is stable but fails to achieve nominal coverage probability. The T2 match-

mg bootstrap is both stable with respect to choice of and achieves nominal coverage.

IV. Finally, we compare all the methods discussed in the context of the

exponential,,inve,'se gamma problem of Examples 2.1 and 3.2. For fixed q and p, we

generated 0, 's i.id. as IG(,, 1), and then generated the Y, 's independently as

Exponential(O,), i = 1, ... , p. Each simulation is again based on 3000 replications; for the

methods requiring a bootstrap, we again used N = 400 bootstrap trials per replication.

Table 2 shows lower endpoint, upper endpoint, interval length and unconditional EB

coverage probability (all averaged over both i and the replications) for the classical, na-

ive EB, unconditional BCN, Laird and Louis bootstrap, r, matching bootstrap, and -r2

matching bootstrap methods for p = 5, true ;I= 2,5, and nominal individual coverage

probabilities y = .90 and .95. The bias corrected method is affected by the choice of j

in three places: in the computation of the R function (2.3) (we need the distribution of

I 17), in solving (2.5), and in the estimated posterior distribution. In our simulation, for

the naive and bias corrected naive we show results obtained using the marginal

UMVUE. Results (not shown) obtained using the marginal MLE gave longer (i.e. too

conservative) bias corrected intervals (extending further to the right), but shorter naive

intervals. For the three bootstrap methods, we also used the UMVUE for vt, since from

Table I this is the best choice for the Laird and Louis method, the only bootstrap sen-

sitive to this choice. Recall also that unbiasedness is assumed in our rough argument

at the end of Section 3.

(Note: Insert Table 2 about here)

Several points can be made from Table 2. As expected, the classical intervals

faithfully achieve the desired coverages, but are quite long compared to the better EB

intervals. The naive EB intervals fail to achieve nominal coverage and are very poor for
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large il with our small p. The bias corrected naive intervals, on the other hand, achieve

the desired nominal coverage to the accuracy of the table (the coverage probabilities

have a standard error of about .005). The Laird and Louis and r2 matching bootstrap

intervals generally achieve the desired coverage, yet the latter are substantially shorter.

The intervals based on matching the flat hyperprior r, are shifted to the left of those

based on T, and generally fail to achieve the desired coverage probability; apparently this

hyperprior is putting too much weight on large values of il.

5. CONCLUSION

In this paper we have developed a general method to conditionally correct the bias

in naive empirical Bayes confidence intervals. We have also attempted to clarify and

expand on the idea of using bootstrap observations to accomplish a marginal posterior

Bayes solution. We conclude that the bias correction method is attractive due to its

general applicability, straightforward implementation, and direct attack on the deficien-

cies of the naive EB interval. The marginal posterior approach can also be quite suc-

cessful although the choice of a good mixing distribution h (equivalently, a good

hyperprior -r) is critical and might require preliminary investigation. Furthermore, im-

plementation of this approach for a given r in the absence of a closed form for p, the

sampling density of it, is not clear.
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TABLE 1. Comparison of Marginal Posterior Methods

Laird , T2
Estimator of q & Louis Matching Matching

y = .95

U M VU E .954 .930 .951
(7.50) (4.51) (5.66)

MLE .931 .928 .950
(4.50) (4.33) (5.61)

Best Invariant .865 .926 .948
(2.76) (4.14) (5.40)

TABLE 2: Comparison of Bias Corrected and Marginal Posterior Methods, p = 5
Average Average Average Average

Interval Lower Upper Interval Uncond'l
Method Endpoint Endpoint Length Coy. Prob.
11=2
y = .90

Classical .335 19.5 19.2 .901
Naive EB .355 3.87 3.51 .839
Bias Corrected .331 4.74 4.41 .897
Laird and Louis .339 5.15 4.81 .904
T, Matching .287 3.23 2.95 .868
r, Matching .311 4.00 3.69 .894

y = .95

Classical .268 39.1 38.8 .952
Naive EB .306 5.53 5.22 .900
Bias Corrected .285 7.84 7.55 .952
Laird and Louis .283 7.79 7.50 .954
T, Matching .246 4.46 4.51 .930

rT Matching .265 5.93 5.66 .951
1=5

y = .90

Classical .084 4.89 4.81 .899
Naive EB .134 .690 556 .771
Bias Corrected .116 1.03 .914 .902
Laird and Louis .114 1.04 .928 .899
, Matching .092 .620 .528 .863

r2 Matching .102 .810 .708 .901
y = .95

Classical .068 9.87 9.81 .948
Naive EB .120 .859 .739 .846
Bias Corrected .103 1.67 1.57 .956
Laird and Louis .096 1.41 1.31 .951
r, Matching .081 .816 .735 .918
r, Matching .089 1.10 1.01 .947
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FIGURE 1. Plots 'Of c,( a vs. -1 for Specified

SUnder Example 2.1
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